The Effect of Sequential Flexor Tendon Pulley Sectioning and Reconstruction on Joint Range of Motion and Tendon Load

M. Haddara1,2,3, B. Byers2,3, L.M. Ferreira1,2,3, N. Suh2,3

1Department of Biomedical Engineering, Western University
2Roth | McFarlane Hand and Upper Limb Centre, 3St. Josephs Hospital

INTRODUCTION

- The A2 and A4 flexor pulleys are important in maintaining proper finger biomechanics.
- Injury to the A2 and A4 following sharp lacerations or crush/iatrogenic injury can result in tendon bowstringing.
- It is unclear how deficient pulleys and subsequent reconstructions at different wrist positions affect actual flexor tendon loads in addition to joint range of motion (ROM).
- We conducted a study to characterize the effects of sequential A2 and A4 pulley sectioning and reconstruction on joint ROM and flexor tendon load.

METHODS

14 digits (index, long, ring fingers) from 5 freshly frozen cadaveric hands (3 Females, 2 Males; avg age: 71.8 years) were tested

A novel in-vitro finger motion simulator was designed and used to achieve full simulated active finger flexion/extension under load control at different wrist positions (wrist neutral, 30° wrist flexed, 30° wrist extended)

Tendon loads were collected using in-line load cells
Joint range of motion were collected using minute electromagnetic trackers inserted laterally to the joints of interest

Protocol

- Intact ➔ 25% A2 cuts (until 100%) ➔ A2 Rec
- A2 Release ➔ 50% A4 cuts (until 100%)
- A4 Rec ➔ A4 Release ➔ A2 Rec + A4 100%
- A2 100% + A4 Rec ➔ Full A2 + A4 Rec

2-way Repeated Measures ANOVA tests were conducted

RESULTS

- Full sectioning of both A2 and A4 pulleys resulted in:
 - Reduced MCP ROM and FDP tendon load by 9.1±7.1 N and 2.3±1.9 N respectively with wrist in neutral.
 - Reduced FDP load by 3.6±3.5 N with wrist flexed
 - Reduced FDP load by 3.5±1.7 N with wrist extended

CONCLUSION

- Sectioning of the A2 and A4 pulleys in all wrist positions showed statistically significant effects on reducing MCP ROM and FDP tendon loads.
- Pulley reconstructions restored metrics with no significant difference compared to the intact state, reinforcing their utility by reducing bowstringing and restoring natural joint biomechanics and tendon loads.
- The new simulator’s capability to measure in-line tendon loads has provided additional tendon load information that compliments the state of knowledge on joint ROM in the context of pulley reconstructions.